[실전 문제] lcm
2021. 2. 17. 12:14ㆍ코딩 테스트/실전 문제
1. 문제
정수 B를 0보다 큰 정수인 N으로 곱해 정수 A를 구할 수 있다면 A는 B의 배수이다.
예:
- 10은 5의 배수이다 (5 * 2 = 10)
- 10은 10의 배수이다(10 * 1 = 10)
- 6은 1의 배수이다(1 * 6 = 6)
- 20은 1, 2, 4, 5, 10, 20의 배수이다.
다른 예:
- 2와 5의 최소공배수는 10이고, 그 이유는 10은 2와 5 둘 다의 배수이고, 10보다 작은 공배수가 없기 때문이다.
- 10과 20의 최소공배수는 20이다.
- 5와 3의 최소공배수는 15이다.
당신은 두 수에 대하여 최소공배수를 구하는 프로그램을 작성 하는 것이 목표이다.
입력
한 줄에 두 자연수 A와 B가 공백으로 분리되어 주어진다.
A와 B는 100,000,000(10^8)보다 작다.
참고: 큰 수 입력에 대하여 변수를 64비트 정수로 선언하시오. C/C++에서는 long long int(%lld)를 사용하고, Java에서는 long을 사용하시오.
출력
A와 B의 최소공배수를 한 줄에 출력한다.
예제 입력
case 1) 1 1
case 2) 3 5
case 3) 1 123
case 4) 121 199
예제 출력
case 1) 1
case 2) 15
case 3) 123
case 4) 24079
2. 풀이
import java.io.*;
import java.util.StringTokenizer;
public class Main {
private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static final BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
StringTokenizer st = new StringTokenizer(br.readLine());
long a = Long.parseLong(st.nextToken());
long b = Long.parseLong(st.nextToken()); // a, b는 10^8 보다 작다
bw.write((a * b)/gcd(a, b) + "");
br.close();
bw.flush();
bw.close();
}
private static long gcd(long n, long m) {
if(n < m) {
long tmp = n;
n = m;
m = tmp;
}
return m == 0 ? n : gcd(m, n % m);
}
}
728x90
'코딩 테스트 > 실전 문제' 카테고리의 다른 글
[실전 문제] findprime (0) | 2021.02.17 |
---|---|
[실전 문제] fractionsum (0) | 2021.02.17 |
[실전 문제] PROSJEK (0) | 2021.02.17 |
[실전 문제] fibonacci (0) | 2021.02.17 |